Constrained RPA Study of Screened Electron Interactions in One-Dimensional Oxides

J. Goikoetxea [1], C. Friedrich [2], G. Bihlmayer [2], S. Blügel [2], A. Arnau [1,3,4], and M. Blanco-Rey [3,4]

[1] Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Donostia-San Sebastián, Spain
[2] Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Germany
[3] Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco UPV/EHU, Spain
[4] Donostia International Physics Center (DIPC), Spain
$\mathrm{DFT}+U$ calculations and the constrained random phase approximation (cRPA) [1] have been used to study the Coulomb interaction screening in one-dimensional magnetic transition metal oxides $\mathrm{XO}_{2}(\mathrm{X}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$, and Ni$)$ adsorbed on the missing-row $\operatorname{lr}(100)-1 \times 3$ surface.

The expected screening produced by the metallic substrate is combined with that by the $O(p)$ ligands in a non-additive manner. This problem is tackled with the basis-set-independent method of Ref. [2] to isolate the correlated space from the rest of the Hilbert space in the cRPA calculations, together with the "shell folding" renormalization approximation [3].

Calculations on the free-standing chains allow us to understand the $O(p)$ ligand contribution. In the case of NiO_{2}, two Hubbard U parameters are determined by cRPA that are associated to two possible $\mathrm{Ni}(d)$ electronic configurations (i.e., multiplets) of spin $S=1 / 2$. These values are $U=2.4$ and 6.4 eV . Interestingly, the low- U and high- U regimes can be identified with the Mott-Hubbard ($d-d$ gap) and charge-transfer ($p-d$ gap) regimes of the Zaanen-Sawatzky-Allen (ZSA) diagram [4], respectively. Upon adsorption on Ir , a low U value is found $(U=1.7 \mathrm{eV})$, which is in part explained by the preference of the $p-d$ gapped band structure.

The electronic structure of the MnO_{2} chain is almost not altered by interaction with Ir. This situation helps to isolate the metal screening contribution, which is estimated with the aforementioned methods to be 0.9-1.4 eV.

References:
[1] F. Aryasetiawan, et al., Phys. Rev. B 70, 195104 (2004), ibid. 74, 125106 (2016).
[2] E. Sasioglu, et al, Phys. Rev. B 83, 121101 (2011)
[3] P. Seth, et al., Phys. Rev. Lett. 119, 056401 (2017)
[4] J. Zaanen, et al., Phys. Rev. Lett. 55, 418-421 (1985)

