Clara Weber

Affiliation

RWTH Aachen

Talk Title
Boundary Charge Fluctuations and Fractional Boundary Charges
Abstract

We establish the quantum fluctuations $\Delta Q_B^2$ of the charge $Q_B$ accumulated at the boundary of an insulator as an integral tool to characterize phase transitions where a direct gap closes (and reopens), typically occurring for insulators with topological properties. The power of this characterization lies in its capability to treat different kinds of insulators on equal footing; being applicable to transitions between topological and non-topological band, Anderson, and Mott insulators alike. In the vicinity of the phase transition we find a universal scaling $\Delta Q_B^2$ ($E_g$ ) as function of the gap size $E_g$ and determine its generic form in various dimensions. For prototypical phase transitions with a massive Dirac-like bulk spectrum we demonstrate a scaling with the inverse gap in one dimension and a logarithmic one in two dimensions. In addition we show results for fractional boundary charges (FBCs) for a strongly interacting system.